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Introduction

Pnenomena of acoustic reflection on plane boundaries
between fluid and elastic media have Leen studied in the
literature Loth theoretically and exgerimentally.'’? A
strilking feature is the appearance of tiie so-callad Rayleigli
rrtave, a surface wave generated in the elastic medium at a
critical angle of incidencz, and propagating with a speed
usually below and close to the shear wave speed in the solid.
Most of its energy is concentrated in the solid near the I
bhoundary, but part of it leaks into the fluid, causing an
attenuation (complex wave number) in the propacation direction
along the surface.

in additional tyze of surface wave was shown to exist Ly
Stoneley.?® This wave has a propagation speed close to that of
sound in the £luid, is unattenuated in the direction of gropa-
gation, and most of its energy is concentrated in the fluid
along the poundary.

In addition to these genuine surface waves, tinere also
exist two types of lateral waves on a flat boundary between

solid and fluid, which propagate with the compressional and

shear speeds, respectively, of bulk waves in the solid.!
Scatterino from solid elastic cylinders has been investi-
gated by means of the llatson-Sommerfeld transformation applicd

to the normal-mode series,!’"

In tuis case, one finds "creeping
waves" with a surface wave type behavior, dividec into two

classes: tnose with speeds close to the elastic bulk speeds




(Rayleigli and vnispering Gallery waves), and thoss with speceds
close to te sound speed in tue fluid (Stoneley and Franz

rraves). Previously, tine Rayleigh and Stoneley-type waves (i.e.,
t.aose tendina toward the Rayleigh and Stoneley vaves in tue

flat limit) were studied by Grace and Goodran® and by Lapin® by
analytic methods, while numerical discussions of the Rayleigi:
and Whisperino Gallery modes (higner order modes which arise
cacause of the curvature of tae surface) were given by Dcolittle,

e,

et al.* The latter authors also treated the Franz waves,
higner order modes in the fluid whicn arise because of the
curvature of tlie oundary (and which also exist on an impene-
trable surface).

In the present work, we shall establish the connection
between creeping vave and flat surface wave theory by investi-
gating the limit of acoustic scatterinc from an elastic cylinder
whose radius tends to infinity. In Chazter I, we calculate
tlie behavior of the circumferential wave rodes for large cylinder
radii. Accordingly, the appropriate Debye- or Airy-type asymp--
totic expansions for the cvlinder functions are used to solve
tii2 secular determinant for the complex surface wave numbers.
Humerical results for the Rayleigh, Stoneley, Franz, and Whispering
Galler: wavz2 numbers are obtained as a function of fluid wave
number times cylinder radius for a solid aluminum cylinder in
water, and in one case, also in vacuum. In Caapter II, using
the Watson-Sommerfeld transformation, we examine the behavior
of the solution for the problem of a cylinder scattering radia-
tion from a line source in the fluid as the cylinder radius tends

to infinity. In tais limit, the residue sums corresvonding to




the different classes of circumferential waves found in
Chapter'I are shown to tend individually toward the different
types of surface waves found on the flat surface. In this
way, the transition of creeping wave to surface wave theory,
as the scattering object tends toward a flat surface, is

established.




Chapter I. Surface Wave Modes on Elastic Cylinders

The complex wave numbers of circumferential waves on
an elastic cylinder in a fluid are obtained as the roots
of a 3 x 3 determinant which may be derived in various ways.
One way consists in assuming interior and exterior solutions
in a form describing circumferential propagation® [with a
time factor exp(-iwt) suppressed}:

T = BO%PT, (k)

(1a)

A,= AL P T (ber)
(1b)

and

$ = P H, Cerd (16)

where Y?,'K are the elastic potentials and § is the velocity
potential in the fluid; k is the acoustic wave number in the
fluid, and kL and kT are the wave numbers of bulk longitudinal
(compressional) and transverse (shear) waves in the solid,
respectively. Matching boundary conditions on the cylinder
surface® then leads to the secular determinant. Alternately,
when the problem of sound scattering by a cylinder is solved

“ the same deter-

using the Watson-Sommerfeld transformation,
minant appears in the denominator of the scattered field,

and its zeros give pole-type contributions which represent




circumferential waves. The scattering problem is discussed
in Chapter II.
The determinant in question, as a function of Y , is"

given by
() Ll TI
G}H; x) o Ky
d= / T
DW= X Hgsoé p(sz oy 2

O oy ayT? (2a)
where

5 = 02 [AT, (-2 T, ()
a(,:'a~ = (0‘ wzxLI,'(XO
vy = [T, 00-x T &Y (2b)
Ay = Ry [T, 6D-4T) (x&
(KJa::fﬁcoaufj;ch§
= —x7 [T, 60D +2 5,00 (2e
Here, & is the cylinder radius; x= k.a.=<-JG/c. where £ is

the sound velocity in the fluid; X y=hk y&=wale, ;

where (ng are the bulk elastic velocities

= Q+3m)fe, | RT=pmlen

that depend on the Lamé constants Ry“ and on the density

(3)

Pa of the cylinder material, while @, is the density of
the ambient fluid. The primes on the cylinder functions
denote derivatives with respect to their argument.
Our subsequent analysis shows the existence of different
classes of zeros, corresponding to physically different types

of surface waves which have been classified in the Introduction.




Each complex root Y=%+{% of the eguation IK9¥=O) inserted
in Egs. (1), yields a circumferential wave with wave number
V/w, phase velocity C'=wa/(;. and linear attenuation V;/a..
Lxcitation and re-radiation of these surface waves take place
at a critical angle @ given by sin@= <3/(3.

We shall be concerned with the case of large cylinder
radii, or large values of the parameters VQX(BldeLand‘XT-
For this purpose, it will be necessary to utilize asymptotic
ex>ansions of the cylinder functions, which assume different
forrs in different regions of the complex ¥-plane, mainly
separated by anti-Stokes lines. In our case, the appropriate
division of the complex ¥-plane is shown in Figure 1. Only
zeros in the first quadrant need to be considered, those in
tne second and fourth quadrant leading to exponentially
increasinag waves, and those in the third quadrant differing
from those in the first only in their sense of circumnavigation.
Regions 1-4 are separated by the anti-Stokes lines of hébCﬂ),
HQPOGS . and lﬂf%?5 , respectively, on which also the zeros
of these functions and of their derivatives are located. The

circles, with radii determined by

V-xi|= 0B, |v-x|= Ox) (4)
(x.= XL or Xy), define regions within which Airv-type
asymptotic expansions are more accurate. Outside, Debye-
type expansions are adspropriate; of these, transition-tyvpe

forrms must be used near their corresponding anti-Stokes lines.




In addition, anti—Stokes lines for J;(XLJ) originate at Xe,r
and run along the real axis to the left, with the zeros of
J;Cng) being located along them.

In the following, we shall consider physically different
tyres of surface waves, corresponding to different types of
zeros ofI)Gé in an individual fashion.

IA. The Rayleigh Zero

In the limiting case of the cylinder radius a%®®, corre-
sponding to the case of a flat elastic half-space bounded by
a fluid, the speed £p of the Rayleigh wave is known for
practical cases to lie somewhat below the speed £+ of the
elastic shear bulk wave.! The corresponding zero Y of D(V))
in the case of large but finite radius of curvature, will
then lie to the right of Xy in Figure 1, with an imaginary
part that puts it above the real axis. In this case, the
appropriate asymptotic expansions of all the cylinder functions
appearing in ])60 are of Debye tyne; cf. Appendix A.

Equation (2a) when set equal to zero, can in general be

rewritten in the form

xhGo=ae, w’{x,_x% Fo 1+ 29 &) + v [1-x.f (X@:V
{x2x2[- 290 1+236)] + Y {1 -xF e Y[1- %7 ‘}(x

(5)

where

=TT 00 :
g(X}): J;"(xi)/a;(xa (6a)
= —<‘/XQ-F(X&3 /) - N

(6b)




héy=H m(x\/ HDR (6c)

If the appropriate Debye expansions of Appendix A are

inserted, we obtain

Ao R / I ;-
‘Fé(a) (}T I) +‘2(}E.;I)XL + g(}_::,__')z/,_x? [ (}'L I) +O'(X 3)
(7a)
N~ 1= —-(}' ’)l/ -3
109~ 7 X ZZ}'--l\x + 06 -

pxf 2y/2
h&)~ L(- L i 2((_}_,))( X(l ¥ )3/:. 2 [ G* l)] +U(’<6

(7¢)

where T;=V/X:_> }’:Y/x both being Na’(l). Using these
expansions and calculating Eg. (5) to lowest order in X;)
writing Y= hka.-fa’(i) yields the well-known generalized
Rayleigh equation for the flat half-space bounded by a

fluid,!

4] -+ 6- )/2&")"‘?%%&& @

which has as one solution the (complex) Rayleigh wave
number hk=CDﬁck to be considered in this section.

The behavior of the Rayleigh wave number hklon a
cylindrically curved surface of large radius of curvature
is obtained by retaining terms of order.ﬁﬂin Eq. (5) when
inserting Egs. (7) into it. With an iterative procedure
that starts from the flat-limit Rayleigh wave number

Rf— '*Q?Rﬁ£3'+(}61-2> (9)




the result for Ek is found as

€&= 3 ‘:.h-k- [kT "’XRL)(RT”'—L}Z (if?‘ XQBB

L.
+i hhg Kew . 1L \)?
R‘ }fk ){RL

X{ h XRL 2(—’- _T[XKT+XAL L‘:.)CRL _htkzxkr
Xar kt Her

R [ hhy
+d0 2% _kke k X,
X kl_k‘T ‘n‘?f,u_ k k-rng kﬂ

(10a)
where
1 ,a\A _ e
Xzf (/Ce‘/&i) X/:‘(A"‘R)
] (10b)
(L=Lﬂ3. This agrees with an expression obtained pre-
viously by Lapin®. The derivation of Eg. (10a) involved
expansions which are valid under the conditions
\f&\( ki ke h;\
-1 . T
ka Y Ry kel > (10c)
\ \( _\_\ Re _
u : (104)

0f these, the case hﬁ=hT is most stringent because of
the proximity of k& to hr in physical cases of interest.
For the case of a solid aluminum cylinder in water

(c=1493 m/sec, c, = 6420 m/sec, Cp = 3040 m/sec, Py =

L
1 g/cm3, py = 2.7 g/cm3), we calculated the flat Rayleigh

limit by solving Eq. (8) numerically, with the result

kefbk = 0.§22 +0.0/s5°¢ (11)
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Subsequently, we calculated €gp from Eq. (10a), using this
value for hg; The results are shown in Figure 2, where the
trajectory of hw/h as a function of the parameter ka. is
plotted as crosses in the complex plane. The conditions of
Lqg. (10c) would indicate that the most reliable results are
those for Ka>70. Also shown in the figure are points of the

trajectory obtained by Ugin&ius"’?

who used convergent expan-
sions of the cylinder functions for Re£25, and Debye expansions
for Ra>25 for a numerical evaluation of the roots when Eq. (2a)
is set equal to zero.

The present results, for large values of ka, appear to
be a natural continuation of Ugindius' zero trajectory, while
the present low-ka values might be less reliable because of
the approximations used as mentioned. Note that our results
were obtained as an expansion away from the Rayleigh limit,
while those of Ugindius tend towards it without having assumed
it as a limit.

It might be noted that in the limit of an elastic cylinder
in a vacuum (p/®0), the flat Rayleigh wave number hg as well as
the correction term €g become purely real, indicating no radia-
tive losses of the Rayleigh wave in this case.

IB. The Stoneley Zero

In the limit of the flat elastic half-space, the other
solution of Eq. (8) of physical interest is the Stoneley zero,’®
a real root corresponding to a speed somewhat less than the

speed of sound in the fluid.! Accordingly, in order to obtain
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an extension of the Stoneley zero to the case of a finitely
curved cylinder, the transition-Debye asymptotic forms (as
outlined in Appendix A) were used in the left-hand side of
Eg. (5) because of the expected vicinity of the zero to the
anti-Stokes line between Regions 3 and 4 of Figure 1. Debye
forms, rather than Airy forms which are more appropriate in
the circle of Region 7, are used since we again want to obtain
the Stoneley zero in the curved case by expanding about the
known flat-limit Stoneley zero. Sufficiently close to zero
curvature, the radius of the Airy circle in the*%bm plane
("reduced plane”) becomes small enough for the Stoneley zero
to lie outside of it. (Even inside the circle, Debye forms
are not incorrect; they just become less accurate).

Ordinary (non-transition) Debye expansions were used for
tlie other cylinder functions in Eq. (5), so that the same
expressions as in Egs. (7a, b) were inserted in Eq. (5).

lHowever, the transition-Debye expansion

HO0~ (@) P 1 {7 x0T v okl
i e-(v":x'-)'/'wvwst. V/K}{l - ﬁ'(x")}

(12)
leads to the expression
hod~ - (Pt + i Y8E)
a2 2(v*=xd) 2vcosh Y/x
+ A (T=)"e (13)
now to be used in Eg. (5). Retention of the lowest-order

subdominant part in the transition-Debye form yields the

exponential in Eq. (13).




L2

Using an approach analogous to that for the Rayleigh
zero, we find the Stoneley wave number h,las
Rs = kg + (es/a.) + 8
(14)
where ks is the flat-limit wave number, and where

- J_% P kks [hz —2h§+X Her+L \t:(& +Xs
{ % "Egr' T Su T 2 X’L XSTL

+ hks//){sL =
%)

L R Ase
Xs\ %2 T X ’2%—5[7(5#7&

T

-'}?;Aék ‘gthz7{;7
£ MR, o kh b l

— 2ika XeL e_;zlz‘a. [‘tanl.r’(?(,//es)— (Xs/h,ﬂ}

3

(15a)
with

Xs.= (k:"'k:)ﬁ ) Hs= (h3- kz)'ﬁ-

(15b)
(£=L,T). This expression differs from a previous one
given by Lapin® in some details. It is valid under
conditions similar to Egs. (10c, d) with kz replaced by
ksi the most stringent one is the analog of Eg. (104).

It is important to note that the only imaginary correc-
tion term to the (real) Stoneley wave number for the flat
case is the exponential in Eq. (1l5a), which resulted from
retaining the subdominant term in the transition-Debye

3 <') . 13
expansion of FA,GO. Physically, it corresponds to the fact
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that on a cylinder the Stoneley wave radiates off tangentially
into the surrounding fluid while on a flat surface, its wave
number is real and it cannot radiate off any energy.

For the solid aluminum cylinder in water, we solved Ec. (8)
numerically and obtained

LS/A = looas” .

® Inserting into

which agrees with earlier results.!
Eg. (l15a) vields the points presented in Figure 3, plotted

as a trajectory in the complex k;ﬂt plane with values of Aa

as a parameter. The imaginary scale of the figure is greatly
expanded because of the smallness of the imaginary part of the
zero. Due to the mentioned conditions of validity of the
aporoximations, the »oints in the horizontal portion of the
figure may not be nurerically reliable. It should be noted

that Lapin's® formula would give the imaginary parts of the
Stoneley zeros only half as large as given by us, but we believe

this to be due to an error in Lavin's printed expression.

IC. The Franz Zeros

This type of zeros arises due to the finite curvature of
the surface, and taerefore exists even in the case of impene-
trable objects. The corresponding surface waves get on and
off the surface tancentially,! and they are no longer present
in the 1limit of a flat surface. Therefore, one cannot expand

the positions of the zeros about the flat limit, as had been

done in the preceding sections. Instead, we shall expand about

the known positions of the zeros for either a soft or a rigid
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cylinder with finite curvature. The latter are given by the
) )

complex zeros of fﬂféd or/ﬁ”éo, respectively,’ which are

located along the anti-Stokes line between Regions 3 and 4 in

Figure 1. Explicitly, they are!!® (n=1, 2,.....):

Vigun= X - 7.zﬂcm\lz &Ry + RELE [’Z: feo—1 / (lo"l.,)] @ /x)'/a

+ & () (17a)

Yiott = X- ’ln‘im’("/-")'/ - e-m\/:@; /603@/ X)'b%— B

(17b)
where N are the zeros of the Airy function, and'ﬁ1those
of its derivative:
bl
Ac(n)=0, ALGE)=0.
Tn " n (17¢)

For the case of the elastic cylinder, we use the
ordinary Debye expansions for the cylinder functions in
-;Cx;_\) j(XQ of Eqs. (6), but the Airy-type asymptotic expan-
sions (Apvendix A) for V\QO. The latter are valid inside the
circle of Region 7 in Figure 1 and had also been used to
obtain Egs. (17), but the results link up smoothly with those
for the zeros outside the circle, in the transition region
between Regions 3 and 4 where transition Debye expansions are
used.'? 1In fact, in the reduced Vﬁba plane, the radius of
the circle shrinks with increasing ha at the same rate at which
the zeros tend towards its center.

One finds in this way:!?

L Be s, AlCaci
O 933_/4'(3{ )
x ﬂ..(—-*;_e "ﬁ’)

+8’(x""2"‘/3) (18)
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with P)%- and v defined in Appendix A. When this is substituted

in Eq. (5), we obtain the equation
- g -6

AL ( %, "p/a)/ﬂcé}e N /3>= r‘

(19a)

where

|- el s XY™ + ey 3]
+ B'(,(S/:)

el-"
oy
(19b)

and
= 1{“ (U=217)(e2-207 7
+ ‘{.c;'- }T.TT[(?:“’)(?;- l)] /L} ) (19¢)

The method to be used for solving Eq. (19a) will
depend on the magnitude of r. Using Egs. (A8) and the

relations

v=x+ 0k P)

(3¢ /oxY" = () P+ B ) |

we obtain from Eg. (19b), to lowest order in the guantity x"/-";

= 0 (xPaiyefe

where ;= k;/k (5=L’T) . For typical fluid-solid interfaces

(20)

one has a(f‘a,/(o,f 0./ , so that ['41 for X=xc~ 10> (for an
aluminum cylinder in water, Xc=6000). In this case, we
follow a method of Streifer and Kodis!?® !® and, letting
7:-1-—@.“'73 we expand Hi,@) and H‘(”)) about %, , defined in
Eq. (17c) as the zeros of :9&/(12) . Subsequently, the guantity

11—’7" is expanded in powers of WZ=~{[TexpCiff3), and we obtain
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from Eq. (19a):
%(X = 72,‘ S %%n W71?"’
LB E/ G+ ’/ € ﬁ.,‘)] + OG)

(21)
Using Eq. (A8d), an iterative solution of this equation
gives the result for the Franz wave numbers (labeled by
n:l).?)...)'.
= Y
Rew F"/“' (22a)
where /
- \fif3 '/3 Za.ll/: g [
e T s (A )Y
Zz_ _-ifth, 33 T/
+E_ ot 2
n éa o Z——s (2(")
272,‘
S et l: (l—-‘T —E - kl
IR
..1*/:(
+2e ( ‘1/3 .
x) (xex
A, > C)(22b)
with
1)
Ko=) (=)
(22c)
2= A Ko
2 S 4
¢ (224)
S= X -+ 4 =4 X XD
(22e)
t = fai-3+ 4 X Ko /b« 2b Qo)
X X
(22f)

This result was arrived at after one iteration, assuming

that a'LLo(TLI, and that E=3<"-%). These conditions are
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met for the material parameters of typical fluid-solid cases.
Accordingly, the above asymptotic expression for >%n constitutes
a series whose terms decrease as powers of Xﬂb.

Note that in Eq. (22b), the first three terms agree
exactly with those of the rigid zeros, Eg. (l17a), and that the
material properties enter only through higher-order terms.

As in the vrevious cases of the Ravleich and Stoneley
zeros, the binomial expansions used in obtaining Egs. (22a, b)

are valid under the conditions

X >3 ,%/(/—A’a")r/z, (23a)
X> 2 \-2'71,\//5,3/1)

x> 2| ﬁnt/s"/z_

(23b)

(23c)
They impose lower limits on x, depending on the order
of the zero. 1In practice, these are found not to be very
stringent, the most stringent one being Eq. (23a) with
{=T. 1In fact, the lower limits of validity were found to
be as low as kav3 for F1l, and e.g. kave0 for F5, for an
aluminum cylinder in water.

Equation (22b) will be a useful expansion for a large
range of x, as long as the numerical value of z is such that
subsequent terms decrease. However, if x becomes very large,
X > X (including the flat limit x-»%0), we will have f'>1 from
Eq. (20). 1In this case, we expand ﬂt’(’() and /}L(‘Q\ in Eq. (19a)

about 7,‘, i.e., ahout the zeros of AL(‘D defined in Egq. (17c).




18

Then, the gquantity 7-1“ may be expanded in powers of Yul,

yielding

%(x)v) e 'lne‘:% il (L'?n/a) ef‘r[aw—3+ 0’(‘—7/3) .

(24)
Using Eg. (A8d) and iterating again, we obtain for the
Franz wave numbers Eq. (22a) with
- S 3 W2 '
YFnT X" Mne /é/ S TN I
60 X Z
e [—i:_ vk o (-’"-__>z/3+ o™
% S 6 ax* 32| )
(X>Xe)  (25)

which was arrived at after one iteration, assuming dLLd}l.l
and ZF=860. With this assumption, Eq. (25) again represents
a series whose terms decrease as powers of )(75 . The first
three terms, in this case, agree exactly with those of the
soft zeros, Eq. (17b), and the material properties enter only
in higher order terms. Conditions of validity are now Egs.
(23) with '7[,, replaced by 7, .

Numerical values of Eg. (22b) are shown in Figures 4a
and 4b for the two lowest Franz zeros, Fl and F2, for an alum-
inum cylinder in water, as compared to the zeros for soft and
rigid cylinders in water. The zeros are plotted as trajectories
in the complex an/k plane with values of ka as a parameter.
Only those soft-cylinder zeros are shown which do not interfere
with the rest of the figure. It is seen that in the range of
x presented here, the elastic-cylinder zeros lie close to those
for the rigid cylinder as expected. For increasing mode number,

corresponding elastic and rigid zeros move closer together.
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ID. The Whispering Gallery Zeros

This type of zeros also arises due to the finite curvature
of the surface, but is associated with the material properties
of the elastic solid, and therefore does not exist in the case
of impenetrable objects. Since they are no longer present in
the limit of a flat surface, we cannot expand the position of
the zeros about the flat limit. Instead, we find the positions
of the longitudinal and transverse Whispering Gallery zeros by
expanding about the known positions of the zeros of 3;(&5
and 3;6ﬁ§ , respectively. The latter are located on the real
axis in Figqure 1, to the left of X_ and Xy, respectively, and

are given by'*(nm=13,...)!

y“;'; n= XL)T ¥ ’IV\CXL)T/ 25'/3 » @:/ ‘OXQ/ xL:T)'/a + B’CXLE'!) (26)

where 7),, are defined in Eq. (17c).

ID1. The Transverse Whispering Gallery Zeros

In this case, we calculate the trajectories for the zeros
which tend toward X¢ for large cylinder radii. The region of
interest in Figure 1 is Region 6, where we use the ordinary
Debye expansions of Egs. (7) for $Cn) ; jcn) , and l\Oﬁ, but

the Airy-type asymptotic expansion (Appendix A) for 4(?155

ot + L.2p 4 9g Al (-2 /3
R~ 3g 73R B A T OETY

with P,?. and m defined in Appendix A. One can write g(xﬁ
in terms of 'P(KT) in Eq. (5) using Eq. (6b). Substituting

these expansions into Eq. (5), we obtain the equation

#PAP= T+
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(28b)

Using Egs. (A8) and the relations

”==Xﬁ'+-8(kﬁy?)

354" o),

we obtain from Eq. (28b), to lowest order in the quantity Xt *
'/J)
(29)
Therefore q>1for all Xy>1, and letting '7=;, we expand
/q.:'(;z) and ﬂ;(y) about %, . Then the quantity N is expanded
in powers of l/r+ yielding
-\ -3 -4/3
3..()@[';/): "]n*’r"l' +(ylnl33r"r -i—O’(XT/). (30)
Using Eq. (A8d), an iterative solution of this equation
gives the following result for the transverse Whispering

Gallery wave numbers (wm=IlR... ):
=¥
hUTSV\ UT,VIIO“ (31a)

where

Vg™ *7 + ) * )6 >+uT

e (F-% 4 “T>(‘:T) + 00

(31b)




24t

with My defined in Eq. (22¢) and

= "‘/{”‘TIZT’“'L) Ry Lﬁu hxr]}

XT("IKT_?“L)'*"-ﬁh’ dT(’(T-“L)/l ‘
("z X (“'r-"(n.)*‘("hxr Gl )3/:

(31c)

(314)

This result was arrived at after one iteration, assuming
that & 4Ay41. The first three terms agree exactly with

those of the zeros of J,(Xv) , Eq. (26), and the material

properties enter only in higher order terms.

The binomial expansions used in obtaining Eqs. (3la, b)

are valid under the conditions

¥a

X> 2o o
i Lr~ ’ (32a)
X > :{%’;1 l"lnlah
(32b)
x>;_Th“,v;\3/2
(32

They impose lower limits on X, depending on the order

of the zero, the most stringent condition being Eq. (32¢).
For an aluminum cvlinder in water, the lower limits of
validity were found to be kav87 for WT,l and e.g. kav547
for WT,5. Numerical values of Eags. (31) for this case are

presented in Section IE.
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ID2. The Longitudinal Whispering Gallery Zeros

In this case, we calculate the trajectories for the
zeros which tend toward X,_ for large cylinder radii. The
region of interest in Figure 1 is Region 5, where we use
the ordinary Debye expansion of Eq. (7c¢) for h(x), and the

Airy-type asymptotic expansion (Appendix A) for f.):

foyv 3 +T;_§3L +%3i f}f (.g)‘P + Blx-2mh)

with P;}.and w defined in Appendix A. The method used

(33)

for finding the longitudinal zeros involves an expansion
about the zeros of 3;(?:) which lie on the anti-Stokes
line for Y, (cf. Appendix A and Ficure 1), and, there-
fore, would necessitate the use of the transition Debye

expansion (Appendix A) for £()-
£oy~- (l—'i}}ylltaw {@Tx —vs,ll—- v.cps"}',r -ft‘/q} + @-(,(_F‘) .

(34)
However, the use of Eg. (34) renders the solution of
Eq. (5) intractable analytically because of the presence
of an overlapping double infinity of zeros. One group arises
from the Airy function of Xi and the other from the tangent
function of Xy. The latter group corresponds to the transverse
Whispering Gallery zeros which lie outside the circle of
Region 6, and they link up smoothly with our results, Egs. (31),
for the zeros inside the circle. We, therefore, approximate
#(k?) in Eg. (34) by the appropriate non-transition Debye
expansion (Appendix A):

= C(-F7 )'/l+ &G+ .

(35)
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We will determine the validity of this approximation by a
self-consistent check after we have calculated the desired
zero positions.

Writing 3Gn) in terms of (%) using Eq. (6b) and sub-

stituting these expansions into Eq. (5), we obtain the equation

/‘}{(3,)//);(3,): e (36a)

RO(TL AT -aD)RFE-)U-7Y?
W{"’-[ ot =40, ¥ (U-FYRU-F)~
—3X... ?Qéﬁ} + &CXL‘/)' v

Using Egs. (AB8) and the relations

Y= X, f-afk 3
Cpany'= = Gy + OGP,

we obtain from Eq. (36b), to lowest order in the quantity X:ﬁ:

&(«T x,_) ’ (37)

Therefore, for &, (dy<4 1) r}_>1 for all X >1, and letting

where

7:;, we expand H:‘.I(?) and Ai(q} about 12,‘ . Then the quantity

7-14 is expanded in powers of VEL , yYielding

FUN= 0+ 7+ (a7 + 66

Using Eq. (A8d), an iterative solution of this equation

(38}

gives the following result for the longitudinal Whispering

Gallery wave numbers (N=\R, . ..):

— &4
w WL" Q.
" : / (39a)
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where

x‘-*”?n@ + _. + L G U
CaRa-agy

+‘L .“d*r n \ w
C2Ral-a) (& C

S ) v

(39b)
with 7(‘,_ defined in Eq. (22c) and
T—
f;— (39c¢)
W=, a hT (w“l. =T —‘K\ _ 2P (10( 20(1‘.’ -o(:d.r")
X Ret-o?) (- Manied)
(394)

This result was arrived at after one iteration, assuming
that & &X7T41, The first three terms agree exactly with
those of the zeros of I;Qﬁ)> Eq. (26), and the material
properties enter only in higher order terms.

The binomial expansions used in obtaining Egs. (39a, b)

are valid under the conditions

x> 20 [T
Ao > (40a)

X>2 ke ’% In \311
n (40b)

3 27, 3
2a:-o7F| - A

X>24
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They impose lower limits on X, depending on the order of the
zero, the most stringent condition being Eq. (40c). For an
aluminum cylinder in water, the lower limits of validity were
found to be kav23 for WL,l and e.g. kavl4l for WL, 5.

In order to determine the validity of our approximation
for f(*v), we substitute our result for Yun » Eq. (39b), into
the exact expression, Eqg. (34), and into the approximate
expression, Eg. (35), and compare the two for the case of an
aluminum cylinder in water. We find that the approximation
imposes an upper limit on x which increases monotonically
with mode number . This result is illustrated in Figure 5,
where we have plotted, as a function of N, the value of ka at
which the absolute value of the relative error in the approx-
imation begins to exceed 25 percent. Numerical values of
Egs. (39) are presented in Section IE.

IE. Discussion of Results

In this section, we present a graphical comparison, for
the specific example of a solid aluminum cylinder in water
(and in one case, also in vacuum), between our analytic results

¢ who used

for the various zeros and the results of Dickey,'
numerical methods to solve for the roots of D(¥)=0. Dickey

did not use Egs. (7), but calculated the asymptotic expansions
of the cylinder functions directly using the Airy-type expan-

sions of Appendix A or Watson's formulation!’ of the Debye

expansions. It is found that the two methods complement each

other insofar as the analytic results can be more easily carried

to very high values of ka (where both methods become more
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accurate, but where the numerical trajectories of one type
of zero often become hard to determine and to identify among
the variety of other zeros), while the numerical results
retain their accuracy down to lower values of ka than the
analytic ones, due to the various approximations made in the
latter method. For the case of the Franz zeros, both methods
are accurate down to very low values of ka and the agreement
between the corresponding results is excellent. For the
Rayleigh, Stoneley, and transverse Whisvering Gallery zeros,
an apparently smooth transition is obtained from the numerical
results below kavl00 (below kav200 for the Whispering Gallery
zeros) to the analytic results for the higher values of ka
up to ka-»®. Numerical results for the longitudinal Whispering
Gallery zeros are not yet available.

Figure 6 presents the complex trajectories of hg7%, for
the Rayleigh zero as a function of the parameter ka. The
circles represent the numerical and the crosses the analytic
results (the latter being also shown in Figure 2). The agree-
ment becomes better as ka increases. The circles appear to
tend towards the calculated flat Rayleigh limit for ka-»eo (square),
which had been used as the anchor point for the analytic cal-
culation, but which has no connection with the numerical calcu-

lation.

In Figures 7, dispersion curves for the Rayleigh zeros are
shown for aluminum cylinders in water (Figure 7a) or in air
and vacuum (Figure 7b). The Rayleigh wave phase velocity A<p’

is plotted in Figure 7a relative to the sound speed in water;
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i.e., essentially the quantity.6g¢¢55k/kgg is plotted, where
k.kl,.E Re(hg'y. The results (circles: numerical results;
curve: analytic result) tend towards the flat limit,‘cg/c,

as ka=»?. In Figure 7b, we plot the numerical Rayleigh zeros
(circles) for the case of an aluminum cylinder in air 0C=330
m/sec,p.= 0.001293/c.m’) and the analytic results (curve) as

8718 (crosses) for

well as some previous results of Viktorov
the aluminum cylinder in a vacuum. Here, the values of ckyQ&
(i.e., normalized to the flat Rayleigh speed) are plotted vs.
Re®. The flat limit for aluminum-vacuum used here was taken!®
as Ap=0.933py=2836 m/sec.

Figure 8 presents the numerical results (solid circles)
and the analytic results (crosses) for the Stoneley wave phase
velocity,.cs¢c , approaching the flat Stoneley limit K3A¢=
0.9975 (calculated by our numerical solution of the flat
Rayleigh equation) as ka-»®. For values up to ka = 100, the
agreement is not as close as for the case of the Rayleigh zero,
but as pointed out earlier, the analytic method should become
valid for the Stoneley zero only at relatively higher values
of ka as compared to the Rayleigh pole.

The first five Franz zeros, together with the Stoneley
zero again, are shown in Figure 9; here, Figure 9a presents
dispersion curves of,C¢[c and bsqc, plotted vs. ka and Figure
9b shows the normalized attenuations or imaginary parts of the
wave numbers,'ﬁq/ﬁa and qujka , plotted vs. ka. The agree-

ment between the solid curves (analytic results) and the
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circles (numerical results) is excellent, reflecting the
increased overlap in the range of validity of the two methods
for this case.

Results for the Stoneley zero (solid circles and crosses)
have been entered in Figures 9a and 9b also. While its dis-
persion curve is very similar to that of one of the lower
Franz zeros, it may nevertheless be clearly distinguished from
the latter by its much lower attenuation as seen in Figure 9b.

In Figure 10a, the dispersion curves of Cmnfc for the
first five transverse Whispering Gallery zeros and.cqu, for
the Rayleigh zero are plotted vs. ka. The so0lid curves are
the numerical results, while the long dashes correspond to
the analytic results for which the previously mentioned con-
ditions of validity, Egs. (10c) and (32c), are satisfied; the
short dashes represent the analytic results for which these
conditions are not satisfied. There is a smooth transition
from the numerical to the analytic results, with the value
of ka for which they link up increasing with mode number, as
expected. 1In Figure 10b, the normalized attenuations ‘Q/ké)wr
are plotted vs. ka. The numerical results (solid curves) are
shown for the first four zeros, while the analytic results
(long dashes) are shown for the first two. Although the agree-
ment between the two methods is not as good here as it was in
the dispersion curves, there is, nevertheless, a smooth transi-

tion from the extranolated numerical (short dashes) to the

analytic results at high ka's.
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The analytic results for the first seven longitudinal
Whispering Gallerv zeros are shown in Figure 11. The dis-
persion curves ofACULﬁ; vs. ka are given in Fiqure lla, and
the normalized attenuations ’Qﬂ&bug vs. ka are plotted in
Figure 1llb. For each mode, the region of areatest accuracy
is shown as a solid curve whose lower limit is determined

from Eq. (40c) and whose upper limit is kam from Pigure 5.

ax
Thus, our analytic and Dickey's numerical results,

arrived at independently, are in good agreement with each

other, increasingly so at high values of ka where the quantities

tend toward@ their expected flat limits.




Chapter II. The Scattering of a Cylindrical Wave

by a Large, Solid Elastic Cylinder

If a cylindrical wave, emanating from an infinite line
source of unit strength at S;QQJS) in the fluid, is incident
upon a solid elastic cylinder of radius a (Figure 12), the
total acoustic pressure at point 1>6Qf% in the fluid is!’!?
[with a time factor exp(-wwt) suppressed]

P= -%— > e,cos g (B“Ibvb H:‘:(k';), reve (41a)

Nn=0

where
E~1y Sa=3 N>0O

Ba= Dy Hyy o)+ H'Chd

(41b)
@
CHI®  atr oY
]
b=-1x H(:\(x) A2 al?
o o2 An
n
>
(41c)

and IA,“*L, andO(’,.:rL (L=432 ) are defined in Egs. (2).

30
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Application of the Watson-Sommerfeld transformation!’!?

to the series solution then leads to

F:PI+FI (42a)

where

. cos@-$) 22 1 0feny

JSWn?V
(42b)
fx= —é—f s‘m7u‘v e VO-Q\)—B‘J H‘?\&A
(42c)

and the contours C’ and C, are shown in Figure 13 and

result from opening up the original contour C of the Watson
transformation. The contribution of the "background
integral” Pr has been shown to be small?® and will be
neglected. The contour C% surrounds the zeros of IL (first-
order poles of the integrand) discussed in Chapter I.
Splitting Py into integrals over contours C, and C, (Figure

14) and applying Imai's transformation'’!'?

”PSW\ Y

cos v(n—?)‘ et rcosvcf) Le
(43)
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to the integral over'(:zserves to split off the geometrical
part of the solution (which no longer has Véhﬂhr in the
integrand), thus yielding residue sums which converge on both
the insonified and shadow sides of the cylinder. The geometri-
cal part P; can be evaluated using the saddle point method
(corresponding to the far-field approximation r3r;-beo), where
the saddle point contour Cg is drawn in Figure 14. Also shown
is the saddle point (to the right of ka) which yields the
incident wave and the saddle point ) which yields the geo-

171% and separates the two types of

metrically reflected wave
residue sums Fi and Pa (arising from the integrals around con-
tours ClznuiCh). Higher-order saddle points yield waves

which are transmitted@ through the cylinder??. Wwe then have

Px=P1+Pat+Py

(44a)
with
= - cos Y (P-¢) 4., N o
P~ 7% ; SinitY, I'): w (R Hy, QLVBB)
- o (44b)
Fl_ e COs %, A b o o
1 ? Sin®Y, & f- Hv,\(h"‘B Hv,\&nb A
" Re v > v
(44c)
Pq= L L W
=5 | dve™P By 9%
Cq D,, >
(444)
where
D,= 9D / v
(44e)
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In the limit of infinite radius, it can be shown that‘f’ yields
the corresponding geometrical portions of the field (i.e.,
incident, geometrically reflected, and transmitted waves) for
the flat elastic half-space (cf. Appendix B and Brill2?°’21),
We are concerned here with the residue sums Py and Pa- which
vield circumferential waves, in the linit of zero curvature.

We first examine the limiting behavior of the saddle point
Yg, since its position determines which residue sum is used.

The equation which Yy satisfies is:!?

cos™'Ys ycos'Ys — 2cos™Ys P
hr h"'o ka. (45)

In taking the limit of Eq. (45), the following changes

of variable are used?? (and will be useful later on):

Y= hasin®
) (46a)
S:=¢x19>
(46b)
R=V""Q) Ro: Y*.-q_)
(46¢c)

where @ is the angle of incidence on the flat elastic
half-space. Thus, @, r, and r, tend toward infinity while
the source-surface and receiver-surface distances remain
constant. Keeping terms in Eg. (45) through 8'@:') , we then

find that:
S

6= -
S ES:L‘\'CR*'E;SR / (47)

.

iin
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When we make the associations

S—>x, R—>=, 7?0—"20) &)

it is clear that Eq. (47) is exactly the equation satisfied
by the saddle point &, for the flat elastic half-space (cf.
Appendix B and Fig. Bl). Thus, the saddle point Y which
yields the geometrically reflected wave in the cylindrical
case tends toward the saddle point 6, which yields the geo-
metrical reflection in the flat case; the two are related by
the transformation Eq. (46a) between the Y- and ®-planes. We
will investigate the case where Re’?.gra“i‘x (cf. Figure 14)
which, in the limit, maps into the flat case shown in Figure
B2 and discussed in Appendix B. Thus, we consider a source-
surface-receiver geometry for which, in the flat limit, all
the surface waves (except the Stoneley) contribute to the
field at the observation point. From Figure 14, it is clear
that residue sum Ps includes the Rayleigh and Whispering
Gallery poles, while residue sum P, includes the Stoneley and
Franz poles.

IIA. The Residue Sum Pa

Using the expansion!

¥ Amfy,
. fi
1 _=-Qie" M) e "
LN A m=0

> (49)

we can rewrite Py as

— 5 i [ei,wa(*?#m *am®) é;y,\cp_m_zmqu

Lf "2 Y m=°

Xi\-Hi"m HOGRRy Reva>% (50)
D, n n h)

n
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We then separate Px into the sums Fh;: over the Franz poles
and F@s‘ over the Stoneley pole. Using the Franz pole
positions Y, of Eq. (25), the appropriate Debye expansions
(cf. Appendix A) for the Hankel functions of ¢ and ¥g , and
Eg. (46b) along with the relations (cf. Figs. 15)

lla_ - a 1
d=Crad)™ dg= (p- o) ’1) (s0m)

1 _ -ta -1
= CO0sS = = C0S —
? v D ?“ "° > (50b)
we find the following asymptotic expression for the Franz

waves:
3 o0

Pag ™y S

{
n=| m=p k(ddb.l"
+ ec‘. E-(d,+cl)+ (k+k,.\sﬂ_ ks’

{3 (@ord) + (Rt ks

X e-’-limfl‘ ypn b

VF“
B,
(51a)
where
ko= L (_h_\'h -3/
Ry =13 Ry 5 (51c)

and the arc lengths § and s’ are shown in Figures 15.
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The term ﬁwknﬁﬁykn contributes an algebraic (non-exponential)
factor (e.g., see Nussenzveig's calculation for the soft
sphere?®). Thus, the n*" Franz wave gets on the cylinder
tangentially, creeos clockwise as in Figure 15a (or counter-
clockwise as in Ficure 15b) around the cylinder [traversing
the arc length s (or s')] with speed Oﬁ«h+h,) and attenuation
hL, and gets off tangentially after m circumnavigations. &s
a tends toward infinity, R;s and k;S' also become infinite,
so that in the limit of zero curvature, the Franz waves are
exvonentially damped out and never reach the observation point.
Thus, they do not contribute to the field in the flat case.
In an analogous manner, we find the following asymptotic

expression for the Stoneley wave (cf. Figures 15):

- e e
e A S

st [ lord)+ksnsT)~ hstsl}

imi Y
Xe T by,

D, >

s

(52)
where we have assumed that the fluid is slightly lossy so
that the flat Stoneley wave number k, is complex (h{:hsp+ih$0.
Thus, the Stoneley wave is also exponentially damped out and
never reaches the observer. As the cylinder radius tends

toward infinity, the Stoneley wave contributes to the field

only in the case of glancing incidence (\yzka), in which case
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the method of steepest descent rniust be modified to take into
account the effect of a pole near the saddle point ¥ (cf.
Appendix B).

IIB. The Residue Sum Pa

Using the expansion of Eg. (49), we can rewrite r1 as

P‘L- W [e“-"n(ﬁ‘*aw\m ) (f Qﬁ-Rmﬁ)] (1\(’(\)
¥rh<xx

4;640 oY @)
W v (RO Hy (R |
oy 1 Y=Yy
Re Yns s, (53a)
where -
Y
fom=x e aDony (o
Hy“(x3 D, ) e (53b)
(9~ T2 L';. T1
-D‘Q’):- dy D(y -D( - d's/ Y
= o3 = Ay> Ay
> by (53¢c)

Le . . .
and.ﬁy‘ andogn (¢=1,2,3) are defined in Egs. (2). We note
that Eq. (5), which we solved for the pole positions, corre-
sponds exactly to*ﬁf@b set equal to zero. We separate'P1
into the sums ?13: over the Rayleigh pole and Fﬁﬂ_ and Pa,T
over the longitudinal and transverse Whispering Gallery poles,
respectively.
We calculate F1>‘: first. Using the pole position
Yor = Rpi&
(3 R’
’ (54)
where |tw is given in Egs. (9) and (10), the appropriate

Devye expansions (cf. Apvendix A) for the Hankel functions
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of X,r, and r, and Eg. (46c), we find that

(2)
H(y,;, —‘QL[)(QG. RICOS %-%
e N
(:R oy RLD(QQ. Ya'COS™ b&-%} {552a)
yk,(kV‘\ HYR ’(hﬁb ﬂ\a.x e R
X eLxK(R’+R°5
’ (55b)
where (cf. Apvendix 3)
K =(R= /{,:37": k cos 6, . o)

Since 4166 set ecual to zero and calculated to lowest order
in X corres:zonds to the géneralized Rayleigh Eg. (8), it can

be shown that, using Eg. (46a),

‘Fz(yg’) A — }taCOSG’ -D (92\ 5
Z £ ey, B, (&%

(56)
where D, is defined in E¢. (B3c). Corbining Egs. (55) and
(56), and using Ec. (46b) along with the fact that asymptot-

ically (cf. Figure 15%)

SinBy ~ sinBy= S— QS_ I
cos8y, ~ cos8p= Re = % ,

’ (57b)
we find the £following asymztotic expression for the
Rayleich ‘Jave

Par’ A — :|>. HECA ei E{(J.-r-:/) + /eks,,:]
D, (&,g
4ot RErD+Re S{_]} "y
“ﬂ=0 > {15:9)
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where the arc lengths §, and Sy’ are shown in Figure 16.
Thus, the Rayleigh wave is excited at the critical angle
(I?e_) &k creeps clockwise ( §) or counterclockwise (sa)
around the cylinder with speed ﬁyﬁekk and attenuation TmRp
and radiates off the cylinder at the same angle after m
circumnavications. As a tends toward infinity, S& also
beconmes infinite, and therefore the imaginary part of Rp
causes the wave which creeps around the shadow side of the
cylinder to be exponentially damped out, so that it never
reaches the observer. The same argument holds true for the
rnultiple circurmnavigations (m#0) and therefore the onlyv wave
which reaches the observation point in the limit of infinite
radius is the one which traverses the finite arc length Sp
and corresponds exactly to the Rayleich wave for the flat

elastic half-space [cf. Egs. (B8)]:

D (eg\ @Cd.‘f‘d)#' hk‘k]

~ -
1R g
R ’ D (9&\ (59)
By usinc the Vronskian relation?"
Q!
(") Hy, (’0 4: I
o )
(20 HY (x) T x Hy GOH 6 om
and the fact that (cf. Egq. (53b)]
F&y=0 , (60b)
we can further simplify our expression fox‘F&:
PO ZZ [w ACPH R (P20 :zm)‘J m
n mso [_ ﬂ
a)
(/z») H,, (kv
Re ¥ e - (61)

RO,
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We "calculate the limiting behavior (x-eo) of Pi,L using the
Dole positions Ywin ©f Egs. (39) even though the method used
to calculate them imposed an ugper limit on X which increased
with mode number wn(cf. Chapter ID2. and Figure 5). The just-
ification for this procedure will be seen later in the calcu-
lation. For Tqﬂ- we use the pole positions %gtn of Egs. (31).
Then, using Eq. (46c) and the appropriate Debye expansions

(cf. Appendix A) for the Hankel functions of X, ¥, and ¥, , and
keeping one more order of accuracy of ¥, in the phase terms

than in the algebraic factors, we find that
i o . L/
T, Y JLCL){LT cxp{-h[){qa-—i’ ’Zv\ hL /ao"l:l
H, 6 2 > Y.\ ]
Y e T

- =t n
Cos A+ -0
" ur v] (62a)

DA HD ~ R . >
w8 Gy~ S exp(3 Dira- 20, N
_KL)T =3

T Y o5y ‘%ZB exp(l— R+Ry) D(L,T

- 2o b
Xt;r Y % ) Yn:le_’w-‘;n > (62b)

where (cf. Appendix B)

)(:,T:-. (kz— k’,;.r)/’"z k cos G'L,T . (62¢)

In order to calculate the quantity
/ -1 1
Y, o=
Eﬂ<"ﬂ - Ei:ﬁﬁﬂ >
Y Y=Y

we use the following asvmptotic expression for a?[k[D&

(63)

[i.e., right hand side of Eg. (5)]:

) i?) SR {@Gﬂﬂ" RS |EL)
) YT E R (64)
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where ’}:.=V/x and -c(x.;)) L=4T , is defined in Eq. (6a).
The following Airy-type asymptotic expressions for QCQ)
and its derivative will also be helpful [cf. Egs. (27) and
(33)]:

N~ b AL(s)
fed sx%fm%‘g_ \/T(%

3 Ry~ A 3 e o [AGT
v A..(pavsg%Jr"Z- [/-}L 3) gx%l'g%

(65a)

2 e .
~ — 2939 |AL(: \_\ K 2\ ALY 3
XL “% AL —5 L) (o5

where we have calculated the leading order behavior of
these quantities. Then [ ££CWD 1" for »g:V@Hn is found by
using the asymptotic expansions of Chapter ID2. and Egs.

(64) and (65) along with the fact that [ef. Egs. (36)]

[ ai @e-adYi0-ay

£6
phdl ‘MTL("K ~ Y2 (- 2) (1~ )/ . 1A6)
T

NXL
The result is

‘F (VUL,vb ~) — dT .
[ ] %ﬁm X (67)

Similarly, [-F( ) 17 for Ya=Ywtn is found by using the
asymptotic expansions of Chapter ID1l. and Egs. (64) and

(65) along with [cf. Egs. (28)]

Fed\_,, (A . .
~x:m 4“ é j‘ )l 2 (68)

and the result is

(atr -2

‘ -1
Y—_Ficym‘“ﬂ N_qﬁ,%[?;(/—ﬂr'ﬁhﬂ@’r ‘)h' x .
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Finally, using Egs. (62) and (46b) and the fact that

asymptotically (cf. Figure 17)

: n . - 50 =3
s”‘ekr’v Suqfhﬂ—— :ﬁ:-:r'>

(70a)
. =R R
cosB + ~ Ccos S
LT S )
L 4 (70b)
w o, c . th ‘ .
(where Ehﬂ' is the excitation angle of the W Whispering

Gallery wave) we find the following asymptotic expression

for the longitudinal and transverse Whispering Gallery waves:

A, Nyt 2
n={

p Nt . :
+eL th (:!,+<l)+- kL,T S{_)-a Z Tel. '7'\(%23 /3a.1/35l{,_r}
n=|

o Lo (71)
X 3 MmN

m=b

where [ﬂ’( Yy )] is defined in Eqs. (67) and (69), A, (W)

is the number of longitudinal (transverse) Whispering Gallery
poles in the first quadrant of the ¥ -plane (cf. Figure 14),
and the arc lengths Syr and S‘:T are shown in Figure 17.
Thus, the nth longitudinal or transverse Whispering Gallery

o
wave is excited at the critical angle Ehg' given by
n V)
5 - r ~ N3
sin &L;r = Jh— [kL,T "[nQi‘gT) o ‘{] X

. /
creers clockwise ( SL“) or counterclockwise ( SHT) around

(72)

the cylinder with speed w/k sin G,:T and radiates off at the
same angle after m circumnavigations. If we assume that the

cylinder is slightly lossy, so that kHT has a small imaginary
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part, then as a tends toward infinity, SQT also becomes
infinite, and the waves which creep around the shadow side
of the cylinder [including the multiple circumnavigations
{m#0) ] are exponentially damped out and never reach the
observer. Tne waves which remain are those which traverse

the finite arc length Sy 7.

Mot Epi’ CYI-.T)] i E(J ol hL’T SL’T] f L.’I"(Ez") s._ T

ws|

(73)
We now approximate the residue sum in Eg. (73) by an
;ntegral
i Esf‘g‘{n-lj ( >SLT
[ LT‘) St
e.1 n\—— ﬂ'ﬂa~{\4
n=l
(74)

where we have used the approximation?“ for M that holds

The approximation of the sum by an integral is justified

for larce n.

(75)

because ﬁﬂ;r cgoes to infinity as a tends toward infinity and
because the function in the sum oscillates less rapidly as

n increases, so that the contributions to the sum (integral)

for small n tend to cancel out. Thus, the primary contribution
to the residue sum (integral) comes from the higher order poles.
We are, therefore, also completely justified in using the pole

positions Yiyn of Egs. (39), since the method used to calcu-

late them imposed an upper limit on X which increased monot-

onically with mode number W (cf. Chapter ID2. and Figure 5).
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We point out that the method of approximating the residue sum
by an integral is similar to that used by Tamir and Felsen?®
for the dielectric slab problem. Rulf,?? on the other hand,
in considering the fluid-fluid (with(q=€; ) cylinder problerm,
did not use the explicit pole vositions to evaluate the
residue sun, but converted it back to a contour integral
surroundino the poles. We treat the fluid-fluid case using
our method in Appendix C.

In order to evaluate the integral in Eq. (74), first we

change variables

(76a)
and then we evaluate the resultant integral:
(Y- 133
jdne ( \] _LE SL,T
_ qu @E)I) S'rg _LQ e':"ﬁ/“
" °da} ;kL’TSL‘T (76b)

where we can assume that llhr has a small imaginary
pvart to assure convergence.?®
In the limit of infinite radius, the expressions for
P%L and T%;T then correspond exactly to the expressions
for the longitudinal and transverse lateral waves for a flat

elastic half--space [cf. Egs. (B9)]:

&AM a2t eaEz(J°+d)+la,_s,_]
Pl T m@o-2%) T (b yr

(77a)

]
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v m (7= o) L R@sd)+hesq)
PisTN 2]@ e—..ny T c

7€ G ier-a Y sy
(77b)

with

mzf’-/ﬁ "




Conclusions

e have established the connection between creeping wave
and flat surface wave theory by investicating the limit of
acoustic scattering from a solid elastic cylinder, imbedded in
a fluid, whose radius tends to infinity.

First, we calculated the asymptotic behavior of the com-
plex circumferential wave numbers by substituting the appro-
priate Debye-or Airy-tyve asymptotic expansions into the 3 x 3
secular determinant and solving it using iterative techniques.
The creeping wave modes fall into two classes: those with
speeds close to the sound speed in the fluid (Stoneley and
Franz waves) and those with speeds close to the bulk wave
speeds in the solid (Rayleigh and Whispering Gallery waves).

It was found that, in the limit of infinite cylinder radius,

the wave numbers of the Rayleigh and Stoneley modes tend toward
those of the Rayleigh and Stoneley waves on a flat elastic
half-space, while the Franz mode wave numbers tend toward the
wave number of sound in the fluid. The longitudinal and trans-
verse Whispering Gallery mode wave nurbers tend toward the long-
itudinal and transverse wave numbers in the solid. Graphical
results were presented for an aluminum cylinder in water (and

in one case, also in vacuum) in the form of trajectories in

the complex wave number plane, phase velocities, and attenua-
tions, all as functions of fluid wave number times cylinder
radius. The results show good agreement with existing numerical

results.

46
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Then, using the Watson-Sommerfeld transformation, we
investigated the limiting behavior of the solution to the
problem of the scattering of a cylindrical wave from a cylinder
whose radius tends to infinity. Using the analytic expressions
for the creeping wave numbers, we calculated the asymptotic
behavior of the residue sums corresponding to the different
classes of circumferential waves. It was found that, in the
limit of infinite cylinder radius, the Rayleigh wave for the
cylinder goes over to the Rayleigh wave on the flat elastic
half-space, while the Franz and Stoneley waves are exponentially
damped out (the Stoneley wave contributes to the field in the
flat case only at glancing incidence, which is a special case
mathematically, and was not discussed). In the limit, the
longitudinal and transverse Whispering Gallery waves combine
to form the longitudinal and transverse lateral waves, respec-
tively, for the flat elastic half-space.

Thus, the transition of creeping wave to surface wave
theory, as the scattering object tends toward a flat surface,

has been established.




Appendix A

Asymptotic Expansions of Cylinder Functions!?’/1!%r17r23

In the following, we present asymptotic expansions of
cylinder functions where both the values of the (real) argu-
ment,ﬂ_, and of the modulus of the (complex) index, ¥, are

large.

1. Debye asymptotic expansions

Debye expansions are appropriate for large values of
\v- '&l'-'-&(‘(}), and are used outside the circles shown in Figure

Al whose radii are determined by |V—}|: 8’(,&!/!) The Debye

HOey ~ @) exp LGyt iveosy- g
v e

L [ _sr -
Xl—w[? .?L@T;\*3<ﬁ> )

(Ala)
Hv(t)( Y Ao @.ﬁ'/" e XF{-L%‘- Y") /l-i-‘\.‘/ <.os-'Y/3 +L@/«f.1
Gy
S N S A .
X {1 *%‘J%‘F—[‘Z 24(\":3'-)] + 0
(Alb)
are valid in Regions I and II of Figure Al, with
|o&3 (g"—v"')'/z' < M/a
o4 Ee,(c.os"v/ 3-’;/“\
ITw (cos"ng) 40 ('R::zum )
>0 CRQBEMI) .
(Alc)
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These regions are separated by the curves

I [('ét vs'h'— v cos"‘//»}_.] =0

and by the portions of the real axis as indicated in the

(A2)

figure. The roots of hL €3> and of f{ (') lie on the curves

labeled h*l in Figure Al, those of ffa¥§) and ffa)€g> on
the curves labeled hzz-

In Region III, one has instead
H m(}) ~ - (23/ exp { ¢ -3‘)'/ +veosh V/'g..}
z\'/y
2}) (R3a)
X{l _L—"YEY_ g 3‘1 - &(g%
H (‘3(35 a H <|3(%3

(A3b)
with
\a.v*; G A&")./L\ 4 M)A
Re (cosh' V/l} >0
|Twm (cos‘/\-\vllg\\ LY .
(A3c)

In Regions IV and V, the appropriate results are obtained

by using
VR
H ad> (ﬁs: Q,L ‘H:)(a)
~0AT G
H “‘(g\z e H, (-33 : (A4)
The curves h:1 are the anti-Stokes lines for the

[{
asymptotic expansions of }Lﬁap, and the curves htz those

for ft?%yﬁ . In the vicinity of these lines (the "transition
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region"), the sum of the asymptotic expansions for the two
adjacent regions has to be used. In the ensuing "transition
Debye forms," the two exponentials then combine to form trig-
onometric functions, while outside the transition regions, one
of the two exponentials is dominant and the other subdominant.

Debye asymptotic expansions for the Bessel functions are,
for Region III

T~ Gt explomy v eoskiy ]
(ytgzym

X{1+W%’I£’:?;X+&(Z-)} (A5a)

with

\O.P}(y"-g")'/"l L Tfa

FL;G:osLﬁ\fq) >0

\Im(cos\{‘v/}\\é . (ASb)
In all other regions, the appropriate expansions are found

by using
Tep=+% E—lﬁ\(g\ +Hy ’(ggx

«
together with the previously stated results for fh Cg)

(A6)

The zeros of J;(B) are located on the real axis in Figure Al,
to the left of . This portion of the real axis forms the
anti-Stokes line for 3;63\, and in the surrounding transition

region, one must use
5'1

~ o - l N %
P~ @) oy { W G ['z %th%
X sinW + 0(»3"5

(Aa7a)
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with
_ 2 L'l"_ - N
W= (g i ) veos V/‘J_ “H (A7b)
where
\o.wg (-3‘-»")'/"\ <ifa,
0¢ Re(cos ‘V/J&\‘ aw .
(A7c)

2. Airy-type asymptotic expansions

For the case that \V-gl: 0’@1"’) , asymptotic expansions
of the cylinder functions which are expressed in terms of
the Airy function are appropriate. They are valid inside the

circles of Figure Al. We havel!?’!*

H(:)(_BBN 2{}3 Fe‘ 3 AL (%e-uf‘la) + &E—l]: (wm\]

(A8a)
H\?\( N~ 2 & L/“\[BHL cq &P g -3f3 (m+)
d é:,l—} Pe €< )+ Ox ] -
where
Gpd= T DR (@2 Vi
F “é ro ¢ <Aa) ) .
= - = ) 2‘]3
Fé» f?o( b* Q}(m@x
(A84)
with
TPy
and
k®=1, RE= (agf)

|‘ "xl
” v

Qo@s =T Q CL) = D)

(A8qg)
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and where the Airy function is given by

AL tdy= _%f- []'.,3(C)+ I./;,(CH .

(A9a)
=2 3%.
C=22%;
(A9Db)
it satisfies Airy's equation,
n N _
AL -z AL =0, (A10)

For J:QP, one finds the compact expression

Tep~EY'p Al oy ¥ (a1




Appendix B

The Reflection of a Cylindrical Wave at a Plane

Fluid-Solid Interface

In this section, we calculate the total acoustic field
due to a line source in the presence of a plane fluid-solid
interface, where both source and receiver are situated in
the fluid. The analysis follows that of Brekhovskikh? and
Uberall,! who considered the fluid-fluid and fluid-solid cases
for a point source, respectively. The field can be resolved
into the incident wave, the geometrically reflected wave, and
surface and lateral waves which propagate along the boundary
and radiate into the fluid.

The geometry of the problerm is shown in Figure Bl. 2An
infinite line source of unit strength is located at S. The
incident pressure wave at the observation point P is, there-

81

fore [with a time factor exp(-iwt) suppressed]

- ¢ )
Fiv\g— T Ho Céf) . (B1)

Using the Sommerfeld representation'? for the Hankel function,
we can write the incident field as a decomposition into plane

waves®® with angle of incidence®:

: R(XSinG + |2-2,[cosB)
agn &
fﬁnc"TEszﬁJé}EL

where the contour C is drawn in Figure B2. The reflected

(B2)

wave is then given by!’?

L tk[Xs5ine+@+2)c0s &)
Preet|= iz Lae R® e

(B3a)
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where R(®) is the plane wave reflection coefficient for a

plane fluid-solid interface:'

7?: D_[D_'_

> (B3b)
with N
D= [o,_coser lt({:.?-s:'n"&) +4b.br Sm"G-]
R, 2\
: o rsn &
s (albLQbT e 3 ——
and
. £ S = s ‘Il. _ h
{>a.,r" (iy i &) y  AgrE L:Tlh. . e
Equation (B3a) for the reflected wave can be rewritten
as
_ Lhe'cos (6-
Presi= 7 | 4o R eHE <22 (6-8)
“ (B4)

where fﬂ is the distance from the image source SJ to the
observation point P.

The integral in Egq. (B4) is evaluated using the method
of steepest descent!’?, where we assume kf/))l . The path
of steepest descent Ck and the saddle point EL (corresponding
to the angle of incidence or reflection of the geometrically
reflected wave) are shown in Figure B2. The result for the

geometrically reflected wave is then

. /
= L |27 ‘kf
P = YT © R(&")Ve'—,r
ke (B5)
as expected from geometrical acoustics.

Additional contributions to the reflected field arise

from any singularities of R(®) which are crosscd as contour
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C is deformed into contour C;. Branch point singularities,
provided by the radicals L‘_)b-r) are found at
8.=1% Si"‘-|°‘v_s By = Lsin oy (B6)
while poles [corresponding to solutions of D+=0, which is
completely equivalent to the generalized Rayleigh Egq. (8)]

of physical interest occur at

sz sin (kk/é)) G‘S: s:‘vr‘(h.;l b_) (B7)
where h& and h, are the Rayleigh and Stoneley wave numbers
[e.g., Egs. (11) and (16) for the water-aluminum interface].
These branch points (and the corresponding branch cuts) and
poles are shown in Figure B2.

The angles Reei, Re &, 8., ana Q7 are the critical angles
of incidence for excitation of the Ravleigh, Stoneley, and
longitudinal and transverse lateral waves, respectively (for
the water-aluminum interface: Ehfﬂ3°26',6ﬁ=29°20',keﬁk=31°36',
RCG,=90°) . When BZRQGE, B'L, and B’-,-, as in Figure B2, then the
Rayleigh and lateral waves contribute to the field at the
observation point P. The Rayleigh wave contribution is found
from the residue at the Rayleigh pole, while the longitudinal
and transverse lateral wave contributions arise from integrals
around the branch cuts originating at G& and B}, respectively.
The resulting expressions are:

Rayleigh Wave:

- -D_(G',b e"._ &L(Lo-'r\_\ ‘\-{ZQLR]
Pr= "3 m (B8a)
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where
L= Qolcose‘k y L= ?-'{cosek) '54_(9'): D'D+(G§/;e, (B8b)
Longitudinal Lateral Wave:

. } L
S et RG]

PR e LY (asa)

Transverse Lateral Wave:

?lrz‘aJé?E;MVQ W\6“¢E"Xf§ | GBLBE(Ler)+hTLi]
T el G- T Gl

(B9Db)

where

Lty ettty et
The geometrical meaning of these results is clear from
inspection of the phases and Figures B3 and B4. 1In each
case, the wave is excited at its critical angle, propagates
along the interface, and reaches the observation point P by
radiating into the fluid at the same angle.

The Stoneley wave is not excited unless 6;'&’—7‘/2 (glancing
incidence), in which case the method of steepest descent must
be modified to take into account the effect of a pole near

the saddle point.? This case will not be discussed here.




Appendix C

Creeping Waves and Lateral Waves

for the Fluid Cylinder

In the case of scattering by a fluid cylinder (Cy=20) we

have the residue suri Pa of Egs. (53) or (61) with

(A.\
(X)__& X (XA (L"l 13

-FLC/“\ZX
Ho® P :R'(’O T (c1)

The Whispering Gallery pole positions are given by!"

VwL)v\': X_+ nné‘%lh'f O’(i‘) (c2)

where, as in the case of the solid, the material properties
enter only in higher order terms. Using the appropriate
Debye expansions for the Hankel functions of X and Airy-type
expansions for the Bessel functions of X_ (cf. Appendix A)
along with Egs. (65) and the fact that

:E'("Q\ =% (- “:.)I*

RINC A AT Coot (c3)

NxL
we obtain the result

[ﬁ' (Vugvb - L&

Call-ad) ’< . (c4)
which is just the limit of Eq. (67) for the solid as o4
goes to infinity. Then, using Egs. (62), (46b), (70), and
(C4), and approximating the residue sum by an integral as

before, we find that

5 -Lnl‘f 0{& eLE{(J,-R“ + hLSL]
Pau \J ar’ m-a2) (hl_su.\’h )

(C5)
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wave for a flat fluid half-space

which is just the limit of Eq. (77a) as Oy goes to infinity

and corresponds exactly to the expression for the lateral

2pR2
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List of Illustrations

Complex Y-plane with various regions in which dif-
ferent asymptotic expansions of cylinder functions

are employed in our analytic calculation.

Rayleigh zero trajectory in the complex plane h&ih
at varving values of the parameter ka, for the case
of an aluminum cylinder in water.

Crosses: present work; solid circles: numerical
results of Ugindius®; solid square: flat Rayleigh
limit. Also shown is the location of'h{k, whose

(real) numerical value is 0.491.

Stoneley zero trajectory in the complex plane h,Jh
at varying values of the parameter ka, for the

case of an aluminum cylinder in water.

Franz zero trajectories in the complex plane hpn“g at
varying values of the parameter ka, for the cases of
soft (@), rigid (@), and aluminum cylinders (x) in
water: (a) first Franz zero, w=1l, (b) second Franz

zero, N=2.

The value of ka, as a function of mode number n, at
which the absolute value of the relative error in

the approximation to the tangent function, used to

59




Fig. 6

Fig. 7

Fig. 8

Fig. 9
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calculate the longitudinal Whispering Gallery zeros,

begins to exceed 25 percent.

Rayleigh zero trajectory in the complex plane hu#h.

at varying values of the parameter ka, for the case

of an aluminum cylinder in water. Crosses: analytic
results; square: flat Rayleigh limit (ka=»®). Circles:

numerical results.

(a) Normalized phase velocity Ath; of the Rayleigh
wave for an aluminum cylinder in water, plotted vs.
ka. Circles: Numerical results, curve: analytic
results.

(b) Normalized phase velocity Ck¢k& of the Rayleigh
wave, plotted vs. k‘d. Circles: numerical results
for aluminum cylinder in air. Curve: analytic
results, and crosses: Viktorov's®’!® results, both

for aluminum cylinder in a wvacuum.

Dispersion curve for the Stoneley wave on an aluminum
cylinder in water. Solid circles: numerical results.

Crosses: analytic results.

Stoneley and first five Franz zeros for an aluminum

cylinder in water. (a) Dispersion curves, (b) normal-

ized attenuation. For the Franz zeros, analytic




Fig. 10
Fig. 11
Fig. 12
rig. 13
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results are given by solid curves, numerical results
by open circles. For the Stoneley zero, analytic
results are given by crosses, numerical results by

solid circles.

(a) Dispersion curves for the first five transverse
Vhispering Gallery zeros and the Ravleigh zero for an
aluminum cylinder in water. The numerical results are
given by solid curves; the analytic results are shown
as long dashes where they are most accurate and short
dashes where they are less reliable.

(b) Normalized attenuations for the Whispering Gallery
zeros. Solid curves: numerical results for first four
zeros. Short dashes: extrapolated numerical results.

Long dashes: analytic results for first two zeros.

The first seven longitudinal Whispering Gallery zeros
for an aluminum cylinder in water. (a) Dispersion
curves, (b) normalized attenuation. The analytic
results are shown as solid curves where they are most

accurate and dashes where they are less reliable.

Geometry of the cylinder scattering problem; 1line

source at S, observer at P.

The complex YV-plane showing contours for the Watson-

Sommerfeld transformation used in the elastic cylinder
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scattering problem [Figure taken from Doolittle,
et al." with permission of the American Institute

of Physics].

Fig. 14 The complex ¥Y-plane showing contours for separating
out the geometrical wave. Also shown schematically
are the positions of the saddle point Vs and the
Rayleigh ( Rpra), Stoneley (Rg@.), Franz (¥g), and
longitudinal (Y. ) and transverse (Ywr) Whispering

Gallery poles for a large, fixed value of ka.

Fig. 15 Franz or Stoneley wave getting on the cylinder tan-
gentially, creeping clockwise (Fig. 15a) or counter-
clockwise (Figure 15b) around it, and getting off

the cylinder tangentially.

Fig. 16 Rayleigh wave being excited at the critical angle 6%,
creeping clockwise or counterclockwise around the

cylinder, and radiating off at the same angle.

Fig. 17 Longitudinal or transverse Whispering Gallery wave
being excited at the critical angle GAT' creeping
clockwise or counterclockwise around the cylinder,

and radiating off at the same angle.

Fig. Al Complex V-plane showing regions of validity for dif-
ferent asymptotic expansions of the cylinder functions,

used in the analytic calculation.




Fig. Bl
Fig. B2
Fig. B3
Fig. B4
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Geometry of an observer at P receiving a cylindrical
wave from a line source at S and a reflected wave

from the image source at S'.

Integration path C for the incident and reflected

waves in the complex &-plane; saddle point @ with

path of steepest descent Cs; Rayleigh pole 8, , Stoneley
pole &, and branch points 6, & with corresponding

branch cuts (dashed lines).

Cylindrical wave from source S exciting Rayleigh wave
at point A, which propagates along interface and
reaches observation point P by radiating into f£fluid

at point B.

Cylindrical wave from source S exciting longitudinal
or transverse lateral wave at point A, which propagates
along interface and reaches ohservation point P by

radiating into fluid at point B.
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